
Adaptive Composite Map Projections in D3
Sukolsak Sakshuwong
sukolsak@stanford.edu

Gabor Angeli
angeli@stanford.edu

ABSTRACT
Selecting a map projection for a visualization is a challenging
problem, as different projections are better suited for differ-
ent purposes, and in particular for different scales. We im-
plemented as an extension to D3 a recent paper on the topic,
which produces a composite projection between zoom lev-
els and latitudes. The implementation ensures that a reason-
able projection is chosen for any given reference frame, and
that the transition between these projections is seamless. We
extended the method in the paper in two key ways: (1) We
interpolate paths and handle edge cases more robustly than
the paper’s proof-of-concept implementation, and (2) We im-
plemented smooth animations between map locations which
provide global context for the move. A demo can be found
online at http://jitouch.com/map.

INTRODUCTION
A significant challenge in selecting an appropriate map pro-
jection, and parametrization for that projection, for visualiz-
ing geographic data. As no projection is good in every aspect,
competing criteria include:

• Equal area: A projection should preserve the areas of a
polynomial. For instance, the Mercator projection presents
inaccurate areas near the poles. In contrast, projections
such as the Hammer, Lambert Azimuthal, or the Albers
Conic projection preserve area.

• Conformal: A projection should preserve local angles.
Mercator is an instance of such a projection; in contrast to
any of the equal-area projections, which must necessarily
distort angles somewhere.

• Equidistant: Distances are preserved from a standard ref-
erence point. Although none of the projections in this pa-
per have this property, an example of the projection is the
azimuthal equidistant projection of the UN logo.

In addition, a projection should take into account to following
criteria:

• Surface: The choice of projecting onto, e.g., a cylinder
versus a cone is often relevant. For example, showing the
entire globe on a cone or other uncommon projection may
serve to confuse the user more then enlighten them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1. A screenshot of our demo. The top screen shows the view that
the user of the map projection would see; the bottom screen shows the
projection as it would look from a global perspective. The particular
view being shown is an interpolated projection between Albers Conic
and Mercator, centered on San Francisco.

• Aspect: Often it is beneficial to view the map from an
oblique angle; for example, for viewing areas near the
poles.

• Integration with existing services: In particular, many of
the maps on the Internet use the Mercator projection, in-
cluding importantly Google Maps and OpenStreetMap. It’s
beneficial to be able to interface with these services.

A recent paper by Bernhard Jenny [1] implemented an adap-
tive projection, which attempts to balance the criteria above
depending on the user’s absolute latitude and the scale at
which they view the map. More details can be found in the
Previous Work section.

We implement this paper as a proposed new projection in D3
(see Figure 1), and extend it to fit the production-ready stan-
dard and level of flexibility expected of D3. In particular, we
address two key challenges:

Wrapping
The shape definitions used to render the globe come already
split at the date line. However, as we’re proposing a map
which has far greater flexibility in its viewport; and, should

be able to handle user-defined polygons. In general these may
wrap around the edge of the map, causing artifacts to appear
on the projected map. We address this problem, described in
more detail later, by interpolating paths and robustly detecting
when such wrapping occurs. The reference implementation
handles wrapping for the small-scale projections, but opts to
hide invisible polygons in most cases.

Extreme Distortion
Certain projections exhibit extreme distortion on the edges of
the map. Particularly when taken jointly with wrapping, the
effect is that there are occasionally phenomena which cannot
be solved with interpolation alone. The reference implemen-
tation does not handle this case.

In addition to these extensions, we implemented smooth an-
imation between local points on a map. The motivation is
to give users context between two local areas, allowing them
to orient themselves at a global, or near global scale, before
transitioning to another local viewport. In addition to being a
useful feature in its own right, this showcases the capability
and applicability of the projection, in that it requires accu-
rate projections at many scales, and requires the efficiency to
transition between them at a high frame rate.

PREVIOUS WORK
The bulk of our project comes from the reimplementation of
a recent paper [1]; we summarize the approach here.

Much of the insight from Jenny’s paper, in turn, stems from
an earlier work by Snyder [2], outlining a decision tree for
which projections to use depending on the scale and loca-
tion of the projection center. In particular, Snyder proposed
the following projections for different scales. The projections
used in our approach are distinguished in italics

• World Hammer, Mollweide, Eckert IV or VI, McBryde,
Boggs Eumorphic, Sinusoidal, or miscellaneous pseudo-
cylindricals.

• Hemisphere Lambert Azimuthal

• Smaller Areas We focus on square and landscape maps,
for which Snyder proposes Lambert Cylindrical, Albers
Conic, and Lambert Azimuthal.

Jenny outlines the criteria being optimized, which we in turn
inherit:

• Distortion An emphasis is placed on equal-area projec-
tions, particularly at large scales.

• Graticules Graticules are constrained by the following
criteria: (1) They should be outward-pointing and not
unusually-shaped; (2) The equator should be a straight line
when the map is centered on it; (3) Straight longitude and
latitude graticules are preferred where possible; and (4)
Straight meridians should be used in polar views.

• Aesthetics Aesthetically, maps with elliptical borders are
preferred to those with rectangular shapes.

• Continuity There should be continuity in the transitions
between projections – this is particularly important to our
application, to help with smooth animations.

The final decision tree arrived at by the paper is summarized
in Figure 2, and described in more detail below. The details
of the projections used are summarized in the next section.

World and Hemisphere Views
At the world and hemisphere views, the paper suggests the
Hammer and Lambert Azimuthal projections. These are, in
fact, two instances of the same generalized projection; inter-
polation is done smoothly between them by varying the hy-
perparameter which differentiates the projections. At extreme
latitudes, a polar aspect is used. This results in the initially
strange, but actually fairly useful phenomena where the map
centers and distorts around a pole. For example, the relatively
small distance between North America and Europe over the
North pole becomes far more salient.

Middle Views
Most of the differentiation in projections come from the mid-
dle scales – on the order of continents or countries. In par-
ticular, near the equator we select the Lambert Cylindrical
projection, optimizing for straight graticules. Near the equa-
tor, this transitions seamlessly from Lambert Azimuthal. In
the majority of the middle latitudes, we use the Albers Conic
projection. Since we are sufficiently zoomed in, we do not
see the aesthetically unappealing properties of the conic pro-
jection; furthermore, the transition from Lambert Azimuthal
is fairly painless. Lastly, at extreme latitudes we maintain the
Lambert Azimuthal projection.

Local Views
A key practical consideration, as mentioned above, is to al-
low the adaptive projection to interface with other web ser-
vices. Importantly, to interface with tile-based services such
as Google Maps and OpenStreetMap. We would thus like to
transition to a Mercator projection, which, in addition, pre-
serves angle and shape accuracy for the small objects we are
likely to see at this scale. The transition is done by interpolat-
ing between the middle scale projections and Mercator with
a simple linear interpolation.

An overview of the behavior of our program, zooming into
San Francisco, is given in Figure 3 We proceed to discuss the
details of each projection in greater depth.

PROJECTIONS USED
Some of the projections used in the previous sections are spe-
cial cases of generalized projections, or reduce to each other
in limiting cases. In this section we review each of the pro-
jections, and their relations to each other. In our discussion,
we will use λ to denote the longitude and φ to denote the lat-
itude of the unprojected point. The projected coordinates are
denoted by x and y.

Generalized Hammer
A generalized formula can be used to unify both the Hammer
and the Lambert Azimuthal projections, given below:

Figure 2. A summary of projections used at different scales and absolute latitudes. The x axis denotes scale; the value corresponds to inverse fraction
of the map the current viewport occupies. Thus, at an x value of 5, the viewport is 1

5
the size of the map. The y axis corresponds to the absolute latitude

of the center of the map; 0 lies along the equator, which 90 is at the poles. This figure is copied from Bernhard Jenny’s paper.

x =
B
√
2 cosφ sin(λ/B)√

1 + cosφ cos(λ/B)
(1)

y =

√
2 sinφ√

1 + cosφ cos(λ/B)
(2)

The free variable B can be used to select between the Ham-
mer projection (B = 2) or the Lambert Azimuthal projec-
tion (B = 1). Importantly, the parameter can also be varied
1 ≤ B ≤ 2 to interpolate smoothly between the two projec-
tions.

Rotation Of Origin
For these projections, it becomes important to rotate the earth
such that it is centered on the center of the viewport. While
the longitudinal rotation is trivial, rotating towards the poles
requires some spherical geometry. Given a rotated longitude
λ, a latitude φ, and a delta δ by which we would like to move,
we compute our new longitude and latitude as:

λ′ = tan−1
sinλ cosφ

cosλ cosφ cos δ − sinφ sin δ
(3)

φ′ = sin−1(cosλ cosφ sin δ + sinφ cos δ) (4)

Note that the argument to sin−1 in φ′ is constrained to be be-
tween -1 and 1 in practice. Figure 4 shows the Lambert Az-
imuthal projection rotated to center on Europe. Again, we see

that the distance between Asia and North America is rather
small over the North pole – an insight which is almost en-
tirely opaque in the cylindrical and even conic projections.

Albers Conic
The Albers Conic projection, given an origin point (φ0, λ0)
and parametrized by standard parallels φl and φu, is defined
by the formulæ below [3]:

x = ρ sin(n (λ− λ0)) (5)
y = ρ0 − ρ cos(n (λ− λ0)) (6)

Where:

n =
1

2
(sinφl + φu)

C = cos2 φl + 2n sinφl

ρ =

√
C − 2n sinφ

n

ρ0 =

√
C − 2n sinφ0

n

Note that the Albers Conic projection can be coaxed into the
Lambert Azimuthal and Lambert Cylindrical projections by
changing the location of the standard parallels.

Lambert Cylindrical

Figure 3. An example of the algorithm, zooming in on San Francisco.
Note that no sharp jumps are noticeable (beyond those caused by zoom-
ing). Nonetheless, note that the graticules are straightening as we zoom
in, and by the end we reach the Mercator projection, allowing us to po-
tentially overlay tiles.

Perhaps the simplest projection, the Lambert Cylindrical pro-
jection is defined as:

x = λ− λ0 (7)
y = sinφ (8)

IMPLEMENTATION
The code was designed to behave as much as a plug-and-
play replacement for other projections as possible. In partic-
ular, the public-facing interface for the composite projection
is very similar to that of other projections, and no functions
were introduced (beyond the animate function) that did not
exist in at least some other projection. The top-level interface
is:

d3.geo.composite([viewport]) Create a new
composite projection. If a viewport is specified, the com-

Figure 4. Lambert Azimuthal projection rotated to be centered over
Europe.

posite projection will calibrate itself according to that
viewport; otherwise, it will create a default projection of
width and height 500px.

composite(location) Project the (λ, φ) point de-
fined by location into (x, y) coordinates.

invert(point) Invert the projection from (x, y) coor-
dinates to longitude and latitude.

origin([location]) Set the origin of the projection
to the given point, or return the origin of the projection.
This is one of the key functions which will change the pro-
jection.

scale([factor]) Set the scale of the projection, or
get the scale. This is the other key function which will
change the projection.

interpolate(origin, destination, λ) Inter-
polate between an origin and a destination position, back-
ing off to a more holistic view as λ → 1

2 . This is the key
function used to animate transitions.

Furthermore, the changes made to d3/geo/path.js are
entirely backwards-compatible with current projections. In
fact, it fixes a bug in the live version of D3 where viewing the
world countries using the Albers Conic projection over the
United States will cause Antarctica to cross over the viewport.
Beyond cases like these, however, the implementation should
neither be incorrect or slower for maps which do not need
interpolation (e.g., the Mercator projection).

EXTENSIONS
In addition to implementing [1] in D3, we create a number
of extensions to the approach, largely focused on refining it
to be appropriate for a production-ready environment. These
improvements are described in the following sections:

Removing Visual Artifacts
Several techniques are employed to minimize visual artifacts
that appear from using D3. These techniques are chosen to
preserve the fidelity of the data without compromising the
rendering speed too much.

Figure 5. A straight line in the Mercator projection.

Figure 6. The same line in the Albers conic projection drawn without
interpolation.

Coarse Granularity
In D3, after the map is projected onto a plane, lines are drawn
from point to point using a straight line in the Cartesian co-
ordinate system. To draw more accurately, we need to draw
along the great-circle arc between points, but this is compu-
tationally expensive as it involves the use of trigonometric
functions and many lines drawn. Drawing a straight line in
the Cartesian coordinate system is visually acceptable as long
as points are not too far apart from each other. However, this
becomes a problem when points are too far apart. For ex-
ample, in Figure 5, a straight line is drawn in the Mercator
projection between two endpoints. When the map transforms
to the Albers conic projection, the same line is still drawn
between the two endpoints, causing a visual artifact.

Figure 7. The same line in the Albers conic projection drawn with inter-
polation.

Figure 8. A line formed by four points in the Hammer projection.

Figure 9. As we rotate the map, two points are moved to the right. The
line between the second point and the third point is incorrectly drawn.

We solve this problem by interpolating lines, attempting to
use as few additional points as possible. To interpolate a line,
we find the middle point between the two original endpoints
using the average latitude and longitude, project the middle
point onto a plane, and then calculate the distance between the
projected middle point and each of the projected endpoints. If
the distance is within a certain threshold, we draw that part.
If not, we recursively divide the line until the length of each
part is within the threshold.

Discontinuity
Map projection transformations are not continuous functions.
Therefore, it is possible that a straight line, after being pro-
jected, might be cut into multiple parts and each part appear
at different sides. For example, in Figure 8, a line is formed
by four points. After we rotate the map to the left, two points
are moved to the right. But the line between the second point
and the third point is still drawn, as in Figure 9. This can be
easily fixed in the interpolation by using the fact that if the
line is continuous, the length of each part after being cut will
converge to zero. But if the line is not continuous, one of the
parts will not converge to zero. Therefore, we limit depth of
the recursion and cut the line if, after reaching the limit, the
length of the line is still greater than the threshold.

We summarize our algorithm for interpolating points in Al-
gorithm 1

Crossing the Antimeridian
The demo that we created allows the user to draw a great-
circle arc between any two points. However, when the arc
crosses the antimeridian (the 180th meridian), a line will

Figure 10. Using interpolation, the line between the second point and the
third point is correctly drawn.

Algorithm 1 Interpolation
1: procedure INTERPOLATE(p0, p1, ρ0, ρ1) . Projected p;

unprojected ρ
2: if ||p0 − p1||2 < 25 then
3: return [p0, p1]
4: end if
5: m← mean(ρ0, ρ1)
6: pm← projection(midpoint)
7: da2m ← ||p0 − pm||2
8: dm2b ← ||p1 − pm||2
9: if dm2b > d2a2m then

10: return [INTERPOLATE(p0, pm, ρ0,m), p1]
11: else
12: a← INTERPOLATE(p0, pm, ρ0,m)
13: b← INTERPOLATE(pm, p1,m, ρ1)
14: return [a, b]
15: end if
16: end procedure

be drawn through a longer path that does not cross the an-
timeridian, causing a visual artifact. For example, the great-
circle arc between (170W, 0) and (170E, 0) is drawn through
(170W, 0), (160W, 0), . . . , and (170E, 0) instead of being
drawn through (170W, 0), (180W, 0), and (170E, 0).

This problem cannot be solved by using interpolation alone
because when we find the middle point between two points,
we use the average latitude and the longitude as the middle
point, which is not the actual middle point of the great-circle
arc. For example, the middle point that we calculate between
(170W, 0) and (170E, 0) is ((−170 + 170)/2, (0 + 0)/2) =
(0, 0), which is not the actual middle point (180W, 0). Hence,
the distance of each part converges to zero as if the trans-
formed line was continuous.

One way to solve this problem is to interpolate lines using the
actual middle point of the great-circle arc of two endpoints,
but this, again, is computationally expensive as we need to
use trigonometric functions and it is a function that is called
extremely frequently. Another way to solve this problem is to
cut the data along the antimeridian. This ensures that when
we find the middle point between any two points using the
average latitude and longitude, the calculated point will not
be too far from the actual middle point. For example, we

Figure 11. The great-circle arc between the United States and Australia.
The arc crosses the antimeridian and is drawn with incorrect interpola-
tion.

Figure 12. The great-circle arc between the United States and Australia
drawn with correct interpolation.

cut the line (170W, 0)–(170E, 0) into (170W, 0)–(180W, 0)
and (180E, 0)–(170E, 0). Since (180W, 0) and (180E, 0)
are the same point, the line will appear continuous when the
user rotates the map.

Extreme Distortion
A nuanced problem arises in the Lambert Azimuthal projec-
tion, and the Hammer variants which approach it. When a
polygon of nonzero width is projected onto the edge of the
map, it begins to distort into a crescent shape, eventually be-
coming a half-circle. In itself, this can be faithfully rendered
by interpolating the polygon. However, in certain cases the
splitting line goes down the center of the polygon, and we
get as a result two opposing half-circles, one on each side of
the map. The effect is that our interpolated path becomes a
full circle, without large jumps or visible discontinuities, as
the location of the jump is at the pole. Since we naively fill
any polygon we render, the visual result is a colored circle
overlaying the rest of the map. This is relevant as Antarctica
distorts into the bottom of the map, or as continents distort off
of the sides (e.g., South America or Africa).

We address this problem by querying the projection regarding
whether a proposed path will undergo extreme distortion. If
every vertex in the path is beyond a threshold, the path is not
rendered. This causes polygons near the edge of the map to
disappear after a certain point; however, by then they are thin
enough that the practical effect is minimal.

Figure 13. A snapshot of the reference implementation from
Jenny, found at http://cartography.oregonstate.edu/
demos/CompositeMapProjection/. The coordinates are
(100W, 65S) at a zoom of 2.1. Note that Russia has distorted around
the map, causing polygons to close themselves in front of the globe.

Importantly, we note that the proof-of-concept implemen-
tation does not handle this case, despite having the bene-
fit of hiding polygons as they exit the viewport. See Fig-
ure 13, or center the demo at zoom level 2.1 and coordinates
(100W, 65S).

Animation
Another extension that we added to the map is animation. The
user can drag the mouse cursor on the global map to create a
great-circle arc. Then the user can click the Animate but-
ton to move the map along the arc. To implement this, we
first convert the Cartesian coordinates of the mouse cursor
into the spherical coordinates. Then we convert the spheri-
cal coordinates into normal vectors, and use spherical linear
interpolation (Slerp) to find points on the arc with an equal
distance between points. We also make use of an ease func-
tion to make the animation appear smooth. This animation
is useful for visualizing, for example, the path an airplane
should fly to get to the destination in the shortest time.

Furthermore, when animating, we zoom out for a wide view
of the globe first to give the user the context of where he
or she is. As we get close to the destination, we zoom in
again. This has the advantage that a visualization developer
can move to significantly different areas of the globe without
worrying that the user would get confused. For example, we
can use animation to visualize a typhoon path in fine-grained
detail and coherently move the user to different parts of the
globe to visualize another typhoon.

DISCUSSION AND FUTURE WORK
The largest bit of work which we intend to undertake is sub-
mitting a pull request to D3, in hopes that the extensions will
actually be incorporated into the distribution. More concep-
tually, however, a number of improvements could be made.

Largest among them: the current D3 framework views projec-
tions as a mapping from points to points. In this framework,

drawing a closed polygon will always draw the inside of the
region. This results in the error discussed above, wherein
an extremely distorted polygon will cover the entire globe.
The principled solution to this, as is being implemented in
the most recent version of D3, is to specify a polarity for the
polygon and shade only the region inside.

Relatedly, handling wrapping of polygons would be more ele-
gantly done if the polygons are treated as atomic units, rather
than a collection of points. This is also, we hear, in the works
for newer D3 versions.

More on the aesthetics side, integration with OpenStreetMap
would make for a compelling demo. The challenge there is
mapping accurately from their notion of scale to ours, and
smoothly rescaling tiles as we change zoom levels, as their
resolution is more fine-grained than the resolution we allow.

CONCLUSION
We implemented a recent paper on adaptive composite map
projections, and integrated the technique into D3. Further-
more, we have made a number of improvements in order to
robustly handle data viewed at non-standard rotations and
scales. Lastly, we have implemented a technique for ani-
mating transitions between local views which gives the user
global context in a visually appealing and useful way. A demo
to showcase our approach is online at http://jitouch.
com/map.

REFERENCES
1. Jenny, B. Adaptive composite map projections.

Visualization and Computer Graphics, IEEE Transactions
on 18, 12 (2012), 2575–2582.

2. Snyder, J. Map projections–A working manual. No. 1395.
USGPO, 1987.

3. Weisstein, E. W. Albers equal-area conic projection. Last
visited on 12/12/2012.

