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Abstract—Coronary artery disease (CAD) is a leading cause
of mortality worldwide. Risk in coronary disease loci is largely
determined by altered expression of its causal genes. A growing
number of studies have been focusing on analyzing the genetic
composition for disease progression, including the genome-wide
association studies that report single-nucleotide polymorphisms
(SNPs) associated to CAD. However, none of the existing methods
attempt to infer the disease causal mechanism ab initio from
the DNA sequence. In this project, we build a convolutional
neural network model to predict chromatin profiling of DNA
sequences, which enables the fine-mapping of disease-causal
genetic variants for CAD. Our model was worse at predicting
ATAC-seq profiles than the state-of-the-art Basenji and also
less specific at predicting profile changes from SNPs identified
by a genome-wide association study (GWAS). Combining SNP
rankings from Basenji and our model may help isolate SNPs
with high predicted differences due to hypothesized causation
and not due to poor prediction on that region of the genome.

I. BACKGROUND AND MOTIVATION

Coronary artery disease (CAD) is the most common form
of heart disease and a leading cause of mortality in many
countries [1], [2]. CAD is caused by plaque buildup in the
walls of the arteries, which blocks the blood flow over time
and could lead to heart failure.

CAD has several environmental risk factors, such as high
LDL-cholesterol, diabetes, and high blood pressure, but the
underlying genetic composition may also substantially modify
the disease risk, hence is critical for disease progression
[2]. Risk in coronary disease loci is determined primarily
by altered expression of the causal gene, due to variation
in binding of transcription factors and chromatin-modifying
proteins that directly regulate the transcriptional apparatus [3].
There are a growing number of studies in the genetic basis of
coronary artery disease (CAD). Pjanic et al. have reviewed
several genetic and genomics assays and approaches applied
to coronary artery disease research [2].

Genome-wide association study (GWAS), with its growing
databases, has been used to discover novel susceptibility
loci for complex diseases through hypothesis-free case-control
studies. Studies have provided large-scale association analysis
for the coronary artery disease using data from multiple indi-
vidual GWAS studies, identifying a number of loci that contain
candidate causal genes [4], [5]. Several statistical methods
have been applied to fine-mapping GWAS loci by calculating

the posterior probabilities of causality for candidate variants
[6]–[8]. Since the first genome-wide association studies of
CAD reported in 2007, with increasing numbers of cases
and controls, the power to discover loci associated with CAD
continues to steadily rise [9]–[12]. However, when interpreting
the results of GWAS, even true associations may not be causal
due to linkage disequilibrium (LD). A GWAS association
could represent either a causal variant or a non-causal variant
that is in LD with the true causal variant, which leaves it a
challenge to unravel the true causal mechanism behind the
genetic composition of the disease [13].

Studies have used RNA-Sequencing to examine how genetic
variation influences gene expression changes through expres-
sion quantitative trait loci (eQTL) and detect allele-specific ex-
pression (ASE) involving the differential expression between
two alleles at heterozygous sites. Both eQTL and ASE have
been used to prioritize functional variants among candidate
GWAS variants and study underlying causal mechanism(s)
of the disease/trait association [8], [14], [15]. The chromatin
immunoprecipitation sequencing (ChIP-seq) and the assay of
transposase accessible chromatin high-throughput sequencing
(ATAC-seq) have been shown to be useful to detect local
nucleosome occupancy and positioning, thus also valuable to
investigate the genetic mechanisms of CAD loci [16]. For
example, a recent study that performed genomic studies in
human coronary artery smooth muscle cells, including chro-
matin immunoprecipitation sequencing, RNA sequencing, and
protein-protein interaction studies, has shown that TCF21 and
JUN regulate expression of two presumptive causal coronary
disease genes, and the co-localization of AP-1 and TCF21
are enriched in coronary disease loci where they broadly
modulate H3K27Ac and chromatin state changes linked to
disease-related processes in vascular cells [3].

Meanwhile, there is a growing interest in building models
for predicting phenotypic outcomes from genotypes using
machine-learning methods. Prediction of cell type-specific
epigenetic and transcriptional profiles from DNA sequence
enables predictions for the influence of genomic variants
on gene expression, which aligns well to causal variants
underlying eQTLs in human populations and can be useful for
generating mechanistic hypotheses to fine map disease loci.
Previous studies have used both classical machine learning



models and deep learning models to predict a genetic variant’s
influence on gene expression and prioritize functional vari-
ants including expression quantitative trait loci (eQTLs) and
disease-associated variants [17]–[19]. These methods have the
advantages of performing predictions ab initio from the DNA
sequence data and also avoiding some complicates brought by
LD.

Therefore, we look into these deep learning ideas for
prioritizing disease-causal variants for CAD. Given chromatin
profiling datasets in coronary smooth muscle cells which have
an important role in coronary artery disease, our objective for
this project is to train neural networks to map DNA sequence
to these profiles and use interpretation methods to score and
fine map genetic variants associated with CAD.

II. OVERVIEW OF EXISTING WORK

A. Classic Machine Learning Approaches

Classic machine learning based methods have been devel-
oped for prediction of epigenetic and transcriptional profiles.
Lee et al. have developed the gkm-SVM method based on
gapped k-mer support vector machines for predicting the
effect of regulatory variation. The model classifies putative
regulatory sequences and matched negative-control sequences
and gives each of the 10-mers an SVM weight that quantifies
its contribution to the prediction of regulatory function, which
is then used to score the predicted impact of any sequence
variant on regulatory activity [20].

Following similar ideas, we build an SVM-based model to
predict ATAC-seq profiles from DNA sequences and use it
as the baseline for comparing the performances of our deep
learning model.

B. Deep Learning Approaches

Zhou et al. developed a deep learning-based framework,
ExPecto, which made ab initio prediction of variant effects on
expression and disease risk using only the genome sequence
[21]. It was based on the previous work, DeepSEA, by Zhou
and Troyanskaya [17], with some notable improvements. The
deep neural network was first trained to predict 2,002 differ-
ent transcription factor, DNA accessibility, and histone mark
profiles for 218 tissues and cell types. Then, the features were
spatially transformed using exponential bases to generate a re-
duced set of features. Finally, tissue-specific regularized linear
models used the transformed epigenetic information centered
on the transcription start sites to predict expression of genes.
The model achieved a 0.819 median Spearman correlation
between predicted and observed gene expression levels across
218 tissues and cell types. It was also able to prioritize GWAS
loci effectively; They found that loci containing SNPs with
stronger predicted effects were significantly more likely to be
replicated in another GWAS. This demonstrated that sequence-
based deep learning frameworks could be an effective tool in
fine-mapping GWAS loci.

C. State of the Art

Kelly et al. developed Basenji, a model similar to the deep
learning-based approach of ExPecto with a few notable dif-
ferences [19]. They trained the deep neural network to predict
4,229 chromatin profiles from over 1,000 tissues and cell
types. The model first performed convolutional and pooling
layers like ExPecto, but instead of using exponential bases to
capture the effects of distal regulatory elements, it then used
dilated convolutional layers, which increased the receptive
field width exponentially [22]. To test the effectiveness of the
receptive field width, they trained models with one to seven
dilated convolutional layers and found that the test accuracy
increased with each additional layer. (They did not use an 8th
layer as it would reach outside the bounds of the sequence
too often.) In addition, their data pre-processing pipeline also
made use of multimapping read alignments, which have been
shown to be important for gene regulation analysis. [23]

To evaluate Basenji’s performance in eQTL prediction,
Kelly et al. used the eQTL data on 19 tissues from the
Gene-Tissue Expression project. For each SNP-gene pair, they
calculated the ”SNP expression difference” (SED) score as the
absolute difference between the predicted CAGE coverage at
that gene’s transcription start sites for the two alleles. They
also took LD in the eQTL data into account by adjusting
SED according to variant correlations. They found that the
adjusted SED significantly correlated with the observed eQTL
(p < 1 × 10−54).

III. METHODS

Our aim was to create a model for predicting Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-
seq) profiles in smooth cardiac cells based solely on DNA
sequence.

A. Data

In total, there were 105,642 peaks within the ATAC-seq
profile across chromosomes one to twenty-three, X and Y.
Of these 105,642 peaks the minimum peak length in base
pairs was 73 and the maximum was 2,499. Ultimately, input
sequences were composed of 13k base pairs with the sequence
corresponding to the peak in the ATAC-seq profile at the center
of the 13k base pair sequence. The output was a prediction for
the ATAC-seq profile corresponding to the center 3k base pairs.
As noted in Figure 1, as all peaks were less than 2,532 base
pairs, the center 2,532 base pair block in the 105,642 input
sequences included both peak and non-peak data points. Like
in past work, the inclusion of sequence outside of the 2,532
center region whose ATAC-seq profile was being predicted
allowed for distal regulatory elements embedded within the
surrounding sequence to be accounted for.

Notably, the model was trained twice. Once on just the ref-
erence sequence and another on the reference sequence, along
with the corresponding complementary sequence. Details are
shown in next section.

We have a list of SNPs with information about their associ-
ated to CAD from a GWAS study. There are 2,420,360 SNPs



Fig. 1. Distribution of peak lengths

in the list. The information provided include the reference and
alternative allele, the frequency of reference allele, number
of cases and controls used in the study, the p-value for
heterozygosity and log odds. The distribution of p-values are
shown in Figure 2. This list of SNPs provides candidates
of causal variants that we will use our prediction model to
prioritize. By simple analysis, we found that 41,277 SNPs
have p-value less than 0.01, 7,376 SNPs have p-value less
than 10−3, 509 SNPs have p-value less than 10−5 and 230
SNPs have p-value less than 5 × 10−7.

Fig. 2. Histogram of log(p value) in GWAS study of CAD-associated SNPs.

We also have a list of peaks in the ChIP-seq profile of
TCF21 in coronary artery smooth muscle cells. TCF21 is a
transcription factor encoded by the TCF21 gene that has been
shown to be important for the development of vital organs,
including heart [24]. A recent study has shown that TCF21
regulates expression of potentially causal coronary disease
genes and is enriched in coronary disease loci [3].

B. Model

Our model made use of dilated convolution to reduce the
13k input to a 2,532 length output. Dilated convolutions
allow for access to an exponentially increasing receptive
field without also exponentially increasing the number of
parameters. This is advantageous with only 105,642 examples.

The dilated convolution between signal f and kernel k
and dilation factor l is defined as [22]:

(k ∗l f)t = Σ∞τ=−∞kτ · ft−lτ

Our model (Figure 3) utilizes sequential convolutional lay-
ers to expand the input field in order to consider distal
elements that affect chromatin accessibility. As the dilation
rate increased, the number of filters decreased, while the kernel
size increased. The number of filters started at 32 in the initial
convectional layer and decreased by a factor of two every other
time the dilation rate increased. The kernel size started at 24
when the dilation rate was 1 and dropped to 4 when the dilation
rate was 5. From there, the kernel size increased by a factor
of 2 every 6 layers. The model was trained using the adam
optimizer to minimize mean squared error.

Our model differs from that of Basenji in a few key ways.
One of which is the initial input window. Basenji determines
outputs based on a 131k base pairs, while our model only
looks at a 13k region. The first section of the Basenji model is
a series of connected layers to generate a single representation
for each 128 base pair bucket, as such predictions are made
on the scale of 128 base pair regions. Our model predicts on
the scale of base pairs.

C. SNP Analysis

Our model will be utilized to hypothesize the causality of
single nucleotide metamorphism (SNPs) in regards to CAD.
From the 2,420,360 SNPs with association data with CAD
from a GWAS study, the top 10,000 with the lowest p-value,
and thus the highest association with CAD, will be analysed to
predict how they impact chromatin accessibility by modifying
the reference genome with the alternative allele and centering
the modified base pair at the center of the input sequence.
10,000 was chosen as it was computationally tractable while
also containing all 7,376 SNPs that have p-value less than
10−3. The max difference between the ATAC-seq profile
predicted for the sequence containing the reference allele and
that containing the alternative allele will serve as a measure
to rank SNPs.

IV. ATAC-SEQ PREDICTION RESULTS

Model R2 score Pearson correlation Spearman correlation
SVM 0.12 0.39 0.40%

Our Model 0.38, 0.70 0.64
Basenji 0.60 0.78 0.70

TABLE I
SUMMARY OF ATAC-SEQ PREDICTION RESULTS

A. Baseline from Classical Machine Learning Approach

Due to constraints on computational power and time, we
implemented our baseline SVM model on only 20% of the
samples available. Additionally, to simplify the prediction task,
the top 15% of the data with the largest ATAC-seq profile



Fig. 3. Model Overview. Output sizes are shown in parentheses and associated
dilation rates are shown to the right. Each convolution layer also includes batch
normalization prior to ReLU activation.

values was removed to decrease the range of values. Each
sample has features obtained from DNA sequence in a window
size of 100-bp centered at the interested base pair location.
The SVM model that uses this subset of samples yields a mean
squared error (MSE) of 1.233, an R2 score of 0.117, a Pearson
correlation of 0.386 and a Spearman correlation of 0.394. A
scatter plot of the prediction results is shown in Figure 4.

B. Basenji

To evaluate the performance of our model against state of
the art, we trained the Basenji model on the ATAC-seq data.
Instead of predicting 4,229 chromatin profiles like the original
study, we modified the last layer of the model to predict only
the ATAC-seq profile. Basenji was trained on all regions of the
genome, not only peaks of chromatin accessibility. The model
took as input a 131,072-bp region and output read count of

Fig. 4. Performance of SVM-based prediction model: a baseline. x axis is
the ATAC-seq profile value; y axis is the predicted profiles.

960 bins, each bin representing a 128-bp region. Chromosomes
9 and 17 were withheld during training. Chromosome 9 was
used for validation, and chromosome 17 was used for testing.

We first trained the Basenji model with random weight ini-
tialization but found the model to overfit quickly and achieved
worse performance than the original study. We hypothesized
that reducing the dimensions of the output (from 4,229 to 1
profile) while keeping almost the same number of parameters
might contribute to the overfitting. We then initialized the
model using the weights from the pre-trained model from
the original study, except for the last fully connected layer,
which had a different shape. The Basenji model achieved an
R2 score of 0.60, a Pearson correlation of 0.78 and a Spearman
correlation of 0.70.

C. Dilated Convolutional Model

While training, all peaks originating from chromosomes
9 and 17 have been withheld. Chromosome 9 was used for
validation, and reported results are from chromosome 17.

Our model was initially trained on just the reference se-
quence. This gives a mean squared error (MSE) of 3.52, an
R2 score of 0.38, a Pearson correlation of 0.70 and a Spearman
correlation of 0.64. The predictions against true profiling are
shown in Figure 5.



Fig. 5. Performance of our prediction model using only the reference genome.
x axis is the true profiles; y axis is the predicted profiles.

Our model was separately trained on the reference sequence,
along with the complementary sequence. This doubled the
size of our training data and resulted in a mean squared error
(MSE) of 6.46, an R2 score of −7.13 × 1012, an undefined
Pearson correlation and an undefined Spearman correlation.
The undefined correlation is caused by the fact that there is
zero variance in the predictions. As shown in Figure 6, the
model only learns the single predicted value that minimizes
the overall MSE.

Fig. 6. Performance of our prediction model using both the reference genome
and its complement. x axis is the true profiles; y axis is the predicted profiles.

V. SNP ANALYSIS

SNPs were ranked by our model and Basenji based on the
max difference in ATAC-seq profile predictions between the
reference and the alternative allele. Example predictions for
the five highest-rated SNPs are included in Figure 7.

An ideal model would be highly specific, with most SNPs
causing very few changes in the predicted ATAC-seq profile,
as most SNPs identified by GWAS are not causative of, but
rather just associated with, CAD. As shown in Figure 8,
Basenji was highly specific while the baseline SVM was not.
This is expected as Basenji is able to more accurately predict
ATAC-seq profiles and thus should be able to better predict

Fig. 7. Predictions for reference allele and alternative allele on Top 5 SNPs
of our model. SNP rs9859153 is the top 1 predicted by both our model and
Basenji.

the difference, or lack thereof, caused by a single base pair
change. Our model behaves slightly worse than Basenji in
terms of specificity, but much better than baseline model and
shows the pattern of concentration towards zero difference as
desired.

Fig. 8. Distribution of maximum absolute differences between predictions for
reference and alternative alleles for top 10,000 SNPs associated with GWAS.

When comparing the ranking of SNPs between Basenji and
our model, there were a significant number of SNPs that were
ranked highly by both models (Table II). Specifically, when
considering the set of SNPs in common between Basenji’s
and our model’s top 20, 50 and 100 ranked SNPs, around
20% of those top SNPs were shared between both models.
While it’s encouraging to note that results were not completely
desperate, it’s difficult to determine which ranking is more
accurate without additional, in vivo validation.

SNPs in common Our Model
Top 20 Top 50 Top 100 Top 500 Top 1000

Basenji Top 20 4 7 7 10 12
Top 50 7 11 13 18 22
Top 100 9 13 17 26 35
Top 500 14 29 37 84 122

Top 1000 15 33 49 125 190
TABLE II

NUMBER OF COMMON SNPS PREDICTED BY BASENJI AND OUR MODEL.

A. Validation Against Literature
Across literature, 32 SNPs have been found to be likely

causal with CAD. rs2075650 (APOE) is a SNP found to cause



higher levels of high-sensitivity C-reactive protein [25]. High-
sensitivity C-reactive protein contribute to chronic inflamma-
tion that contributes to coronary events like myocardial infarc-
tion [25]. rs7412 (APOE), rs1746048 (CXCL12), rs10757274
(9p21), rs17465637 (MIA3) and rs646776 (SORT1) are all
SNP alleles found to be associated with CAD by the CARDIo-
GRAMplusC4D consortium [26]. These SNPs were found to
decrease cytokine levels in serum, which caused a cytokine im-
balance that is linked to an immune inflammatory pathogenic
pathway of CAD [26]. In a biological assay with HeLa cells,
disruptive missense variants in the low-density lipoprotein
receptor gene caused higher plasma LDL-cholesterol, which
is linked to myocardial infarction [27].

Of these 32 SNPs, only two of them had low enough p-
values to be considered in our study of 10,000 SNPs. Of these
two SNPs, rs1746048 (CXCL12) was ranked as the 19th top
SNP in Basenji and as the 22nd ranked SNP in our model.
rs646776 (SORT1) was ranked as the top 1544th SNP in
Basenji and as the top 3107th SNP in our model. Overall,
our model and Basenji aligned well with the high-ranking
SNP and did not align as well for the other. This could be
because only had a few SNPs had a large predicted change,
so agreeing on ranking those large changes is an easier task.
On the other hand, when considering a SNP that did not have a
large predicted change, as was the case for the majority, small
margins separated max differences for many SNPs, so getting
similar rankings when the predicted change was smaller was
more difficult.

B. Validation Against TCF21 Binding

Of the 10,000 GWAS SNPs with the lowest p-value, 345
SNPs are located within peaks of TCF21 binding in coronary
artery smooth muscle cells. TCF21 is a transcription factor that
has been implicated in CAD by multiple studies [3], [16]. To
test whether the models were able to prioritize TCF21 SNPs,
we plotted the cumulative distribution of these SNPs against
the baseline where the SNPs were distributed uniformly (Fig-
ure 9). We found that Basenji was able to prioritize SNPs
that are located within TCF21 peaks even without explicitly
using TCF21 ChIP-seq profile as an input, while our model
did not do as well as Basenji. We hypothesized that this
might be because, by using a pre-trained model trained with
many transcription factors, Basenji was able to identify certain
motifs.

VI. DISCUSSION

While many of the SNPs ranked highly by our model and
Basenji cannot be validated by biological assays in other
studies, certain SNPs occur on genes that could be causal to
CAD. One such SNP is rs9859153, the top ranked SNP by both
our model and Basenji. This SNP in inositol hexakisphosphate
kinase 1, a gene that regulates the accumulation of fat stores
in by the body by affecting AMPK-mediated adipocyte energy
metabolism [28]. It was determined that inositol hexakispho-
sphate kinase 1 regulates energy metabolism in a way that

Fig. 9. Cumulative distribution of SNPs that are within TCF21 peaks. The
baseline shows a uniform distribution of the SNPs.

implies it could affect obesity, of which CAD is a comorbid
condition [28].

Another such SNP is rs6905958, which is only ranked in
the top 25 by our model. rs6905958 is a variant within the
SLC22A3, which encodes organic cation transporter 3 (OCT3)
that helps to inactivate biogenic amines and remove toxic
substances [29]. SLC22A3 has been shown to be involved
in coronary vascular development and could explain how this
SNP may be causal [29].

Though our model did not beat the state-of-the-art in terms
of ATAC-seq profile prediction, even Basenji, the state-of-
the-art model, did not always perfectly predict. As shown
in Figure 10, certain SNPs had a higher MSE between the
actual and predicted ATAC-seq profile and were ranked highly
by Basenji. We hypothesized that the high ranking may not
be because of a causal link between the SNP and CAD, but
rather there is a large max difference in the prediction on the
reference versus alternative allele sequence because Basenji
predictions were not accurate in that region of the genome.
As such, any changes may be as a result of poor modeling.
To test this theory, the subset of SNPs ranked in the top 20,
50, 100, 500 and 1000 by both our model and Basenji were
compared to just those ranked by Basenji. As show in Table III,
for the top 20, 50, and 500 SNPs, the average MSE dropped
by more than 12%. This seems to imply that cross referencing
models identifies SNPs that are in regions of the genome that
are better able to be predicted on. As such, any change due
to swapping the alternative allele for the reference allele is
more likely to occur in vivo and less likely to be due to poor
predictive capability.

VII. FUTURE WORK

Due to computational limits, this study only considered the
top 10,000 SNPs with the lowest p-values as determined by
GWAS for our analysis. However, many of the causal SNPs
identified in literature were not within this set. In the future,
we would like to predict the potential effect of more than 2
million SNPs provided in the data set in order to determine
if some SNPs that have low association with CAD may have



Fig. 10. Actual ATAC-seq profiles and predicted ATAC-seq profiles for two
SNPs ranked within the top 20 by Basenji. SNP rs17727814 has a higher
MSE between the actual and predicted values than rs12311093.

Number of SNPs All SNPs SNPs in common Percent ∆
Top 20 16843.76 14713.52 -12.65%
Top 50 15589.74 12544.83 -19.53%
Top 100 14199.12 12440.82 -12.38%
Top 500 14080.50 14322.98 1.72%
Top 1000 14223.22 14595.79 2.61%

TABLE III
AVERAGE MEAN SQUARED ERROR BETWEEN THE ACTUAL AND BASENJI’S

PREDICTED ATAC-SEQ PROFILE.
PREDICTIONS WERE ACROSS A 71,680 BP SEQUENCE AND ON THE

REFERENCE GENOME. ALL SNPS REFERS TO THE AVERAGE MSE ACROSS
ALL TOP SNPS. SNPS IN COMMON REFERS TO THE AVERAGE MSE

ACROSS ALL SNPS THAT WERE RANKED IN THE TOP N SNPS BY BOTH
BASENJI AND OUR MODEL.

high causality. As CAD is such a widespread disease, it would
make sense for there to be many genetic causes and perhaps
there is a SNP that is causal for some small subsection of the
population. This would explain why the SNP would not be
ranked highly in GWAS, but could potentially still be causal.

Additionally, we would like to consider more complex
models. Our initial model has 12 dilated convolutional layers
and the updated model has 16. However, even the updated
model still collapses to a single prediction when run on the
original and complementary sequences. We hypothesize that
this is due to underfitting and would like to consider a more
sophisticated model with a slower rate of increase in dilation,
allowing for more convolutional layers. As Basenji considers
both the original and complementary sequences, it may be
beneficial to generate a model that targets predicting on both
sequences. That would not only double the size of the training

data, but also provide some means of normalization as the
weights would have to consider both the original and the
complementary sequence that generate the same ATAC-seq
profile.
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